Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Sci Nutr ; 12(3): 1465-1478, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38455210

RESUMEN

In the Mediterranean diet, olive oil serves as the predominant fat source and has been linked to a decreased risk of mortality related to cardiovascular diseases (CVD). Still, there is no conclusive evidence correlating olive oil consumption to CVD. The aim of this study is to assess the global research, current research trends, and knowledge mapping related to the correlation between the consumption of olive oil and CVD using bibliometric analysis. On August 19, 2023, a title-specific literature search was conducted on the Scopus database using the search terms "olive oil" and "cardiovascular disease" with a date range of the past 50 years. Subsequently, bibliometric tools such as VOSviewer and Bibliometrix were employed to analyze and evaluate the obtained documents. The search yielded (n = 429) publications and showed an upward trend in the annual publication count over the last five decades. The publication number exhibited a gradual increase with a rate of 5.55%. The results also indicated that 2530 authors, 759 institutions, 47 countries, and 223 journals have publications in this research domain. The present bibliometric study will be a valuable research reference for describing the worldwide research patterns concerning the relationship between olive oil and CVD during the past 50 years. In the future, the application of olive oil for the treatment of CVDs may be an emerging research trend. Apart from this, collaborations among authors, countries, and organizations are expected.

4.
Chem Biodivers ; 20(8): e202300249, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37318911

RESUMEN

The study presents antioxidant, phytochemical, anti-proliferative, and gene repression activities against Hypoxia-inducible factor (HIF-1) alpha and Vascular endothelial growth factor (VEGF) of Elaeocarpus sphaericus extract. Elaeocarpus sphaericus dried and crushed plant leaves were extracted using water and methanol by ASE (Accelerated Solvent Extraction) method. Total phenolic content (TPC) and total flavonoid content (TFC) were used to measure the extracts' phytochemical activity (TFC). Antioxidant potential of the extracts was measured through DPPH, ABTS, FRAP, and TRP. Methanolic extract of the leaves of E. sphaericus has shown a higher amount of TPC (94.666±4.040 mg/gm GAE) and TFC value (172.33±3.21 mg/gm RE). The antioxidant properties of extracts in the yeast model (Drug Rescue assay) showed promising results. Ascorbic acid, gallic acid, hesperidin, and quercetin were found in the aqueous and methanolic extracts of E. sphaericus at varying amounts, according to a densiometric chromatogram generated by HPTLC analysis. Methanolic extract of E. sphaericus (10 mg/ml) has shown good antimicrobial potential against all bacterial strains used in the study except E. coli. The anticancer activity of the extract in HeLa cell lines ranged from 77.94±1.03 % to 66.85±1.95 %, while it ranged from 52.83±2.57 % to 5.44 % in Vero cell lines at varying concentration (1000 µg/ml-31.2 µg/ml). A promising effect of extract was observed on the expression activity of HIF-1 and VEGF gene through RT-PCR assay.


Asunto(s)
Antioxidantes , Elaeocarpaceae , Humanos , Antioxidantes/química , Factor A de Crecimiento Endotelial Vascular/genética , Extractos Vegetales/farmacología , Extractos Vegetales/química , Células HeLa , Escherichia coli , Flavonoides/análisis , Metanol , Fenoles/farmacología , Fenoles/análisis , Fitoquímicos
5.
Food Chem ; 422: 136259, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37150115

RESUMEN

Pulses have been consumed worldwide for over 10 centuries and are currently among the most widely used foods. They are not economically important, but also nutritionally beneficial as they constitute a good source of protein, fibre, vitamins and minerals such as iron, zinc, folate and magnesium. Pulses, but particularly species such as Macrotyloma uniflorum, Phaseolus vulgaris L., Glycine max L. and Vigna umbellate, are essential ingredients of the local diet in the Indian Himalayan Region (IHR). Consuming pulses can have a favourable effect on cardiovascular health as they improve serum lipid profiles, reduce blood pressure, decrease platelet activity, regulate blood glucose and insulin levels, and reduce inflammation. Although pulses also contain anti-nutritional compounds such as phytates, lectins or enzyme inhibitors, their deleterious effects can be lessened by using effective processing and cooking methods. Despite their great potential, however, the use of some pulses is confined to IHR regions. This comprehensive review discusses the state of the art in available knowledge about various types of pulses grown in IHR in terms of chemical and nutritional properties, health effects, accessibility, and agricultural productivity.


Asunto(s)
Phaseolus , Vitaminas , Dieta , Minerales , Hierro
6.
Hum Cell ; 36(3): 877-893, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36749539

RESUMEN

The human monkeypox virus (MPV), a zoonotic illness that was hitherto solely prevalent in Central and West Africa, has lately been discovered to infect people all over the world and has become a major threat to global health. Humans unintentionally contract this zoonotic orthopoxvirus, which resembles smallpox, when they come into contact with infected animals. Studies show that the illness can also be transferred through frequent proximity, respiratory droplets, and household linens such as towels and bedding. However, MPV infection does not presently have a specified therapy. Smallpox vaccinations provide cross-protection against MPV because of antigenic similarities. Despite scant knowledge of the genesis, epidemiology, and ecology of the illness, the incidence and geographic distribution of monkeypox outbreaks have grown recently. Polymerase chain reaction technique on lesion specimens can be used to detect MPV. Vaccines like ACAM2000, vaccinia immune globulin intravenous (VIG-IV), and JYNNEOS (brand name: Imvamune or Imvanex) as well as FDA-approved antiviral medications such as brincidofovir (brand name: Tembexa), tecovirimat (brand name: TPOXX or ST-246), and cidofovir (brand name: Vistide) are used as therapeutic medications against MPV. In this overview, we provide an outline of the MPV's morphology, evolution, mechanism, transmission, diagnosis, preventative measures, and therapeutic approaches. This study offers the fundamental information required to prevent and manage any further spread of this emerging virus.


Asunto(s)
Mpox , Viruela , Animales , Humanos , Mpox/epidemiología , Viruela/prevención & control , Salud Pública , Salud Global , Vacunación , Cidofovir
7.
Comb Chem High Throughput Screen ; 26(12): 2099-2112, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36476432

RESUMEN

Alzheimer's disease (AD) is an increasingly common neurodegenerative disease that attracts the attention of researchers and medical community in order to develop new, safe and more effective drugs. Currently available drugs could only slow the AD progression and relieve the symptoms, in addition to being linked to moderate-to-severe side effects. N-methyl D-aspartate (NMDA) receptors antagonists were reported to have the ability to block the glutamate-mediated excitotoxic activity being good therapeutic targets for several neurodegenerative diseases, including AD. Based on data obtained so far, this review provides an overview over the use of NMDA antagonists for AD treatment, starting with a key emphasis on present features and future aspects regarding the use of NMDA antagonists for AD, and lastly a key focus is also given on its use in precision medicine.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Memantina/farmacología , Memantina/uso terapéutico , N-Metilaspartato/uso terapéutico , Receptores de N-Metil-D-Aspartato/uso terapéutico
8.
Artículo en Inglés | MEDLINE | ID: mdl-36217430

RESUMEN

Millions of people are affected by neuronal disorders that are emerging as a principal cause of death after cancer. Alzheimer's disease, ataxia, Parkinson's disease, multiple system atrophy, and autism comprise the most common ones, being accompanied by loss of cognitive power, impaired balance, and movement. In past decades, natural polyphenols obtained from different sources including bacteria, fungi, and plants have been utilized in the traditional system of medicine for the treatment of several ailments. Endophytes are one such natural producer of secondary metabolites, namely, polyphenols, which exhibit strong abilities to assist in the management of such affections, through modifying multiple therapeutic targets and weaken their complex physiology. Limited research has been conducted in detail on bioactive compounds present in the endophytic fungi and their neuroprotective effects. Therefore, this review aims to provide an update on scientific evidences related to the pharmacological and clinical potential along with proposed molecular mechanism of action of endophytes for neuronal protection.

9.
Molecules ; 27(20)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36296470

RESUMEN

The genus Cajanus (Family: Fabaceae) consists of approximately 37 species, and Cajanus cajan (C. cajan) is a significant member of the genus. It is a commercial legume crop widely grown in sub-tropical and semi-arid tropical areas of the world. C. cajan is well known for its folk medicinal uses to treat various disorders, such as toothache, dizziness, diabetes, stomachache, female ailments and chronic infections. These properties have been linked to the presence of several value-added nutritional and bioactive components. Different solvent extracts from C.cajan (leaves, root, stem and seeds) have been evaluated for their phytochemical and biological activities, namely antioxidant, antimicrobial, antidiabetic, neuroprotective, and anti-inflammatory effects. Taken together, and considering the prominent nutraceutical and therapeutic properties of C. cajan, this review article focuses on the important details including ethnomedicinal uses, chemical composition, biological applications and some other medicinal aspects related to C.cajan nutraceutical and pharmacological applications.


Asunto(s)
Cajanus , Fabaceae , Cajanus/química , Antioxidantes/farmacología , Solventes/química , Antiinflamatorios/farmacología , Hipoglucemiantes
10.
Oxid Med Cell Longev ; 2022: 5628601, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36105486

RESUMEN

Artemisia plants are traditional and ethnopharmacologically used to treat several diseases and in addition in food, spices, and beverages. The genus is widely distributed in all continents except the Antarctica, and traditional medicine has been used as antimalarial, antioxidant, anticancer, antinociceptive, anti-inflammatory, and antiviral agents. This review is aimed at systematizing scientific data on the geographical distribution, chemical composition, and pharmacological and toxicological profiles of the Artemisia genus. Data from the literature on Artemisia plants were taken using electronic databases such as PubMed/MEDLINE, Scopus, and Web of Science. Selected papers for this updated study included data about phytochemicals, preclinical pharmacological experimental studies with molecular mechanisms included, clinical studies, and toxicological and safety data. In addition, ancient texts and books were consulted. The essential oils and phytochemicals of the Artemisia genus have reported important biological activities, among them the artemisinin, a sesquiterpene lactone, with antimalarial activity. Artemisia absinthium L. is one of the most famous Artemisia spp. due to its use in the production of the absinthe drink which is restricted in most countries because of neurotoxicity. The analyzed studies confirmed that Artemisia plants have many traditional and pharmacological applications. However, scientific data are limited to clinical and toxicological research. Therefore, further research is needed on these aspects to understand the full therapeutic potential and molecular pharmacological mechanisms of this medicinal species.


Asunto(s)
Antimaláricos , Artemisia , Aceites Volátiles , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Artemisia/química , Medicina Tradicional , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico
11.
Prog Biomater ; 11(4): 321-329, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35904711

RESUMEN

Medicinal applications of turmeric-derived curcumin have been known to mankind for long ages. Its potential in managing "cystic fibrosis" has also been evaluated. This autosomal recessive genetic disease is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) which involves an impaired secretion of chloride ions and leads to hypersecretion of thick and sticky mucus and serious complications including airway obstruction, chronic lung infection, and inflammatory reactions. This narrative review aims to highlight the available evidence for the efficacy of curcumin nanoformulations in its potential treatment of cystic fibrosis. Recent research has shown that curcumin acts on the localized mutant CFTR ion channel at the plasma membrane. Preclinical studies have also shown that curcumin nanoformulations have promising effects in the treatment of cystic fibrosis. In this context, the purpose of this narrative review is to highlight the general bioactivity of curcumin, the types of formulations and related studies, thus opening new therapeutic perspectives for CF.

12.
Oxid Med Cell Longev ; 2022: 1035441, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35677108

RESUMEN

Plants including Rhizoma polgonati, Smilax china, and Trigonella foenum-graecum contain a lot of diosgenin, a steroidal sapogenin. This bioactive phytochemical has shown high potential and interest in the treatment of various disorders such as cancer, diabetes, arthritis, asthma, and cardiovascular disease, in addition to being an important starting material for the preparation of several steroidal drugs in the pharmaceutical industry. This review aims to provide an overview of the in vitro, in vivo, and clinical studies reporting the diosgenin's pharmacological effects and to discuss the safety issues. Preclinical studies have shown promising effects on cancer, neuroprotection, atherosclerosis, asthma, bone health, and other pathologies. Clinical investigations have demonstrated diosgenin's nontoxic nature and promising benefits on cognitive function and menopause. However, further well-designed clinical trials are needed to address the other effects seen in preclinical studies, as well as a better knowledge of the diosgenin's safety profile.


Asunto(s)
Asma , Diosgenina , Neoplasias , Trigonella , Asma/tratamiento farmacológico , Diosgenina/farmacología , Diosgenina/uso terapéutico , Humanos , Neoplasias/tratamiento farmacológico , Fitoquímicos , Extractos Vegetales
13.
Molecules ; 27(10)2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35630670

RESUMEN

Neuroinflammation, a protective response of the central nervous system (CNS), is associated with the pathogenesis of neurodegenerative diseases. The CNS is composed of neurons and glial cells consisting of microglia, oligodendrocytes, and astrocytes. Entry of any foreign pathogen activates the glial cells (astrocytes and microglia) and overactivation of these cells triggers the release of various neuroinflammatory markers (NMs), such as the tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), interleukin-1ß (IL-10), nitric oxide (NO), and cyclooxygenase-2 (COX-2), among others. Various studies have shown the role of neuroinflammatory markers in the occurrence, diagnosis, and treatment of neurodegenerative diseases. These markers also trigger the formation of various other factors responsible for causing several neuronal diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), multiple sclerosis (MS), ischemia, and several others. This comprehensive review aims to reveal the mechanism of neuroinflammatory markers (NMs), which could cause different neurodegenerative disorders. Important NMs may represent pathophysiologic processes leading to the generation of neurodegenerative diseases. In addition, various molecular alterations related to neurodegenerative diseases are discussed. Identifying these NMs may assist in the early diagnosis and detection of therapeutic targets for treating various neurodegenerative diseases.


Asunto(s)
Enfermedades Neurodegenerativas , Biomarcadores , Humanos , Inflamación/patología , Interleucina-1beta , Microglía/patología , Enfermedades Neurodegenerativas/patología
14.
Oxid Med Cell Longev ; 2022: 6025900, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35154569

RESUMEN

The use of phytochemicals is gaining interest for the treatment of metabolic syndromes over the synthetic formulation of drugs. Senna is evolving as one of the important plants which have been vastly studied for its beneficial effects. Various parts of Senna species including the root, stem, leaves, and flower are found rich in numerous phytochemicals. In vitro, in vivo, and clinical experiments established that extracts from Senna plants have diverse beneficial effects by acting as a strong antioxidant and antimicrobial agent. In this review, Senna genus is comprehensively discussed in terms of its botanical characteristics, traditional use, geographic presence, and phytochemical profile. The bioactive compound richness contributes to the biological activity of Senna plant extracts. The review emphasizes on the in vivo and in vitro antioxidant and anti-infectious properties of the Senna plant. Preclinical studies confirmed the beneficial effects of the Senna plant extracts and its bioactive components in regard to the health-promoting activities. The safety, side effects, and therapeutic limitations of the Senna plant are also discussed in this review. Additional research is necessary to utilize the phenolic compounds towards its use as an alternative to pharmacological treatments and even as an ingredient in functional foods.


Asunto(s)
Antiinfecciosos/efectos adversos , Antioxidantes/efectos adversos , Fitoquímicos/efectos adversos , Extractos Vegetales/efectos adversos , Plantas Medicinales/química , Senna/química , Animales , Etnofarmacología/métodos , Humanos , Medicina Tradicional/efectos adversos , Fitoterapia/efectos adversos , Componentes Aéreos de las Plantas/química , Raíces de Plantas/química
15.
Oxid Med Cell Longev ; 2022: 2910411, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35096265

RESUMEN

The roots, leaves, and seeds of Lepidium sativum L., popularly known as Garden cress in different regions, have high economic importance; although, the crop is particularly cultivated for the seeds. In traditional medicine, this plant has been reported to possess various biological activities. This review is aimed at providing updated and critical scientific information about the traditional, nutritional, phytochemical, and biological activities of L. sativum. In addition, the geographic distribution is also reviewed. The comprehensive literature search was carried out with the help of different search engines PubMed, Web of Science, and Science Direct. This review highlighted the importance of L. sativum as an edible herb that possesses a wide range of therapeutic properties along with high nutritional values. Preclinical studies (in vitro and in vivo) displayed anticancer, hepatoprotective, antidiabetic, hypoglycemic, antioxidant, antimicrobial, gastrointestinal, and fracture/bone healing activities of L. sativum and support the clinical importance of plant-derived bioactive compounds for the treatment of different diseases. Screening of literature revealed that L. sativum species and their bioactive compounds may be a significant source for new drug compounds and also could be used against malnutrition. Further clinical trials are needed to effectively assess the actual potential of the species and its bioactive compounds.


Asunto(s)
Suplementos Dietéticos/análisis , Lepidium sativum/química , Fitoquímicos/química , Extractos Vegetales/química
16.
Eur J Pharmacol ; 916: 174699, 2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-34919888

RESUMEN

Cancer, the uncontrolled proliferation and metastasis of abnormal cells, is a major public health issue worldwide. To date, several natural compounds have been reported with their efficacy in the treatment of different types of cancer. Chemotherapeutic agents are used in cancer treatment and prevention, among other aspects. Acteoside is a phenylethanoid glycoside, first isolated from Verbascum sinuatum, which has demonstrated multiple effects, including antioxidant, anti-epileptic, neuroprotective, anti-inflammatory, antifungal, antihypertensive, and anti-leishmanial properties. This review gathered, analyzed, and summarized the literature on acteoside and its anticancer properties. All the available information about this compound and its role in different types of cancer was collected using different scientific search engines, including PubMed, Scopus, Springer Link, Wiley Online, Web of Science, Scifinder, ScienceDirect, and Google Scholar. Acteoside is found in a variety of plants and has been shown to have anticancer activity in many experimental models through oxidative stress, apoptosis, anti-angiogenesis, anti-invasion, anti-metastasis, synergism with other agents, and anti-proliferative effects through modulation of several pathways. In conclusion, acteoside exhibited potent anticancer activity against different cancer cell lines through modulating several cancer signaling pathways in different non- and pre-clinical experimental models and thus could be a strong candidate for further clinical studies.


Asunto(s)
Antineoplásicos , Fenoles , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Glucósidos/farmacología , Glucósidos/uso terapéutico , Fenoles/farmacología
17.
Oxid Med Cell Longev ; 2022: 2041769, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36824615

RESUMEN

The genus Papaver is highly esteemed in the pharmacy industry, in the culinary field, and as ornamental plants. These plants are also valued in traditional medicine. Among all Papaver species, Papaver somniferum L. (opium poppy) is the most important species in supplying phytochemicals for the formulation of drugs, mainly alkaloids like morphine, codeine, rhoeadine, thebaine, and papaverine. In addition, Papaver plants present other types of phytochemicals, which altogether are responsible for its biological activities. Therefore, this review covers the phytochemical composition of Papaver plants, including alkaloids, phenolic compounds, and essential oils. The traditional uses are reviewed along with their pharmacological activities. Moreover, safety aspects are reported to provide a deep overview of the pharmacology potential of this genus. An updated search was carried out in databases such as Google Scholar, ScienceDirect, and PubMed to retrieve the information. Overall, this genus is a rich source of alkaloids of different types and also contains interesting phenolic compounds, such as anthocyanins, flavonols, and the characteristic indole derivatives nudicaulins. Among other pharmacological properties, numerous preclinical studies have been published about the analgesic, anticancer, antimicrobial, antioxidant, and antidiabetic activities of Papaver plants. Although it highlights the significant impact of this genus for the treatment of a variety of diseases and conditions, as a future prospect, characterization works accompanying preclinical studies are required along with clinical and toxicology studies to establish a correlation between the scientific and traditional knowledge.


Asunto(s)
Alcaloides , Papaver , Papaver/química , Antocianinas , Alcaloides/química , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Medicina Tradicional
18.
Oxid Med Cell Longev ; 2021: 1917890, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34512863

RESUMEN

The genus Diplazium (family: Athyriaceae) comprises approximately 350 species of pteridophytes. Diplazium esculentum (Retz.) Sw. is an important member of this genus and commonly known as a wild vegetable in the Himalayan and sub-Himalayan communities. According to the literature analysis, D. esculentum was traditionally used for the prevention or treatment of several diseases such as diabetes, smallpox, asthma, diarrhea, rheumatism, dysentery, headache, fever, wounds, pain, measles, hypertension, constipation, oligospermia, bone fracture, and glandular swellings. Various extracts of D. esculentum were evaluated to elucidate their phytochemical and pharmacological activities. A wide array of pharmacological properties such as antioxidant, antimicrobial, antidiabetic, immunomodulatory, CNS stimulant, and antianaphylactic activities have been recognized in different parts of D. esculentum. The review covers a systematic examination of pharmacognosy, phytochemistry, and pharmacological applications of D. esculentum, but scientifically, it is not fully assessed regarding complete therapeutic effects, toxicity, and safety in the human body. The published literature on D. esculentum and its therapeutic properties were collected from different search engines including Wiley online, PubMed, Springer Link, Scopus, Science Direct, Web of Science, Google Scholar, and ACS publications by using specific terms such as "Diplazium esculentum, bioactive compounds, biological activities and health benefits" from 1984 to 2021 (March). Therefore, further studies are required to identify the detailed action mechanism of D. esculentum in vitro/in vivo, and also, more studies should focus on conservation, cultivation, and sustainable utilization of the species.


Asunto(s)
Helechos/química , Medicina Tradicional/métodos , Humanos , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología
19.
Antioxidants (Basel) ; 10(7)2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34356384

RESUMEN

Viral infections constitute a tectonic convulsion in the normophysiology of the hosts. The current coronavirus disease 2019 (COVID-19) pandemic is not an exception, and therefore the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, like any other invading microbe, enacts a generalized immune response once the virus contacts the body. Melatonin is a systemic dealer that does not overlook any homeostasis disturbance, which consequently brings into play its cooperative triad, antioxidant, anti-inflammatory, and immune-stimulant backbone, to stop the infective cycle of SARS-CoV-2 or any other endogenous or exogenous threat. In COVID-19, the corporal propagation of SARS-CoV-2 involves an exacerbated oxidative activity and therefore the overproduction of great amounts of reactive oxygen and nitrogen species (RONS). The endorsement of melatonin as a possible protective agent against the current pandemic is indirectly supported by its widely demonstrated beneficial role in preclinical and clinical studies of other respiratory diseases. In addition, focusing the therapeutic action on strengthening the host protection responses in critical phases of the infective cycle makes it likely that multi-tasking melatonin will provide multi-protection, maintaining its efficacy against the virus variants that are already emerging and will emerge as long as SARS-CoV-2 continues to circulate among us.

20.
Oxid Med Cell Longev ; 2021: 5900422, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34257813

RESUMEN

The genus Peganum includes four species widely distributed in warm temperate to subtropical regions from the Mediterranean to Mongolia as well as certain regions in America. Among these species, Peganum harmala L., distributed from the Mediterranean region to Central Asia, has been studied and its phytochemical profile, traditional folk use, and application in pharmacological and clinical trials are well known. The review is aimed at presenting an insight into the botanical features and geographical distribution of Peganum spp. along with traditional folk uses. This manuscript also reviews the phytochemical profile of Peganum spp. and its correlation with biological activities evidenced by the in vitro and in vivo investigations. Moreover, this review gives us an understanding of the bioactive compounds from Peganum as health promoters followed by the safety and adverse effects on human health. In relation to their multipurpose therapeutic properties, various parts of this plant such as seeds, bark, and roots present bioactive compounds promoting health benefits. An updated search (until December 2020) was carried out in databases such as PubMed and ScienceDirect. Chemical studies have presented beta-carboline alkaloids as the most active constituents, with harmalol, harmaline, and harmine being the latest and most studied among these naturally occurring alkaloids. The Peganum spp. extracts have shown neuroprotective, anticancer, antimicrobial, and antiviral effects. The extracts are also found effective in improving respiratory disorders (asthma and cough conditions), dermatoses, and knee osteoarthritis. Bioactivities and health-enhancing effects of Peganum spp. make it a potential candidate for the formulation of functional foods and pharmaceutical drugs. Nevertheless, adverse effects of this plant have also been described, and therefore new bioproducts need to be studied in depth. In fact, the design of new formulations and nanoformulations to control the release of active compounds will be necessary to achieve successful pharmacological and therapeutic treatments.


Asunto(s)
Alimentos Funcionales/normas , Peganum/química , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...